Fluid Fertilizer Technology Workshop 2008

Session B: Fluid Sulfurs Soil Amendments

Tom Fairweather

Tessenderlo Kerley

Western Fertilizer Handbook

Commonly Used Materials and Their Equivalent Amendment Values (Table 10-4)

Material		Tons of Amendment Equivalent to:		
100% Basis	Chemical Formula	1 Ton of Pure Gypsum	1 Ton of Soil Sulfur	
Gypsum	CaSO ₄ ·2H ₂ 0	1.00	5.38	
Soil Sulfur	S	0.19	1.00	
Sulfuric acid (conc.)	H ₂ SO ₄	0.61	3.20	
Ferric sulfate	Fe₂(SO₄)₃ [.] 9H₂O	1.09	5.85	
Lime sulfur 22% S	CaS _x	0.68	3.65	
Aluminum sulfate	AL ₂ (SO ₄) ₃ ·18H ₂ O	1.29	6.94	
Ammonium polysulfide	(NH ₄) ₂ S _x	0.37	1.95	

 NH_4 in APS is assumed to neutralize 1.8 lbs of CaCO₃ when a crop is present.

From "Water Penetration Problems in California Soils"

Soil Amendments

Chemical Name	Trade Name/ composition	Tons equal to one ton sulfur	Lbs required per acre to replace 1 meq/100g of Na in 6" of soil	Pounds required per acre foot of water to obtain 1 meq/L of calcium	Chemical reaction in calcareous soils
Elemental sulfur	100 % sulfur	1.00	321	43.6	$2S + 3O_2 + 2 CaCO_3 + 4NaX = 2CaX_2 + 2NaSO_4 + 2 CO_2$
Gypsum	100% CaSO₄·2H₂O	5.37	1720	234	$CaSO_4 + 2NaX = CaX_2 + Na_2SO_4$
N-Phuric	10% N 55% Sulfuric acid	3.40 5.56	1090 1780	148	$H_2NCONH_2H_2SO_4 + CaCO_3 + 2NaX = CaX_2 + H_2NCONH_2 + Na_2SO_4 + CO_2 + H_2O$
Ammonium Thiosulfate	Thio-Sul 12-0-0-26S	2.52 7.70	807 2470	110 336	(NH ₄)2S ₂ O ₃ + 2O ₂ + CaCo ₃ + 2NaX = CaX ₂ + (NH ₄)2SO ₄ + Na ₂ SO ₄ + CO ₂
Ammonium polysulfide	Nitro-Sul 20-0-0-40S	1.59 3.13	510 1000	69.1 136	(NH ₄) ₂ S ₅ + 8O ₂ + 4CaCO ₃ + 8NaX = 4CaX ₂ + (NH ₄) ₂ SO ₄ + 4CO ₂
Sulfuric acid	100% H ₂ SO ₄ ª	3.06	981	143	$H_2SO_4 + CaCO_3 + 2NaX = CaX_2 + Na_2SO_4 + CO_2 + H_2O$

Purpose of Soil Amendments

- Reduce the amount of sodium in the soil
- Improve water infiltration
- Softens the soil
- Release other nutrients; P, Zn, etc.
- Indirectly provides S nutrition
 - Improves crop quality
 - Improves nitrogen utilization
 - Reduces plant stress

Comparison of Soil Amendments

Elemental Sulfur oxidation $S + 1.5 O_2 + H_2O \xrightarrow{\text{Thiobacillus}} H_2SO_4$ 32 98

1 lb of S will produce 3.06 lbs of sulfuric acid in the soil.

Comparison of Soil Amendments

- $H_2SO_4 + CaCO_3 \longrightarrow CaSO_4 + H_2O + CO_2$ 98 100
- 1 lb of sulfuric acid will neutralize 1.02 lbs of CaCO₃
- 1 lb of elemental S will neutralize 3.125 lbs of CaCO₃
- 3.06 X 1.02 = 3.125 lbs

Ammonium - NH₄

- $NH_3 + H_2O \longrightarrow NH_4 + OH^-$
- NH₄ + 3/2O₂ Nitrosomonas →

 $NO_2 + H_2O + 2H^+$

- $NO_2 + 1/2O_2 \longrightarrow NO_3$
- $2H^+ + OH^- \longrightarrow H_2O + H^+$

Net products: $NO_3^- + H^+ + 2H_2O$ or 1 H+/1 N Ammonium will neutralize 3.6 lbs of CaCO₃ per lb of N

From: "Fluid Fertilizer Science and Technology" by Palgrave

Urea

- $(NH_2)_2CO + H_2O \xrightarrow{urease} (NH_4)_2CO_3$
- $(NH_4)_2CO_3 + 2H_2O \longrightarrow 2NH_4^+ + 2OH^- + CO_2 + H_2O$
- $2NH_4^+ + 3O_2 \longrightarrow 2NO_2^- + 2H_2O + 4H^+$
- $2NO_2^- + O_2 \longrightarrow 2NO_3^-$
- $2OH^{-} + 4H^{+} \longrightarrow 2H_2O + 2H^{+}$

Net products: $2NO_3^- + 2H^+ + 5H_2O$ or $1 H^+/ 1N$ Urea will neutralize 3.6 lbs of CaCO₃ per lb of N

From: "Fluid Fertilizer Science and Technology" by Palgrave

Comparison of Soil Amendments

> 1 lb of N as Ammonium (NH4) will neutralize 3.6 lbs of $CaCO_3$

- > 1 lb of N as Urea will neutralize 3.6 lbs of CaCO₃
- > 1 lb of elemental sulfur will neutralize 3.12 lbs of $CaCO_3$
- > 1 lb of sulfuric acid will neutralize 1.02 lbs of $CaCO_3$

Comparison of Soil Amendments

Product	Lbs CaCO ₃ Neutralized	Lbs of Sulfuric acid
1 lb of N as NH ₄	3.6	
1 lb of N as urea	3.6	
1 lb of elemental S	3.12	
1 lb of sulfuric acid	1.02	
1 lb of S will produce		3.06

Comparison of Soil Amendments Sulfuric acid

1 ton of 93% sulfuric acid has 1860 lbs of acid
1860 lbs X 1.02 lbs of CaCO₃ = 1897 lbs CaCO₃ neutralized

Comparison of Soil Amendments N-Phuric 15/49

> N-Phuric is 15% N as urea with 49% sulfuric acid

- > 2000 lbs X .49 = 980 lbs of sulfuric acid
- > 980 lbs of acid X 1.02 lbs $CaCO_3 = 1000$ lbs $CaCO_3$ neutralized

> 300 lbs N as urea X 3.6 lbs $CaCO_3 = 1080$ lbs of $CaCO_3$

> Total = 2080 lbs of $CaCO_3$ plus the value of the nitrogen

15/49 VS Sulfuric Acid

- 15/49 will neutralize 2080
- Sulfuric acid will neutralize 1897
- The difference is in the value of the nitrogen

Comparison of Soil Amendments N-Phuric 10/55

- > N-Phuric is 10% N as urea with 55% sulfuric acid
- ➤ 2000 lbs X .55 = 1100 lbs of sulfuric acid
- > 1100 lbs of acid X 1.02 lbs $CaCO_3 = 1122$ lbs $CaCO_3$ neutralized
- > 200 lbs N as urea X 3.6 lbs $CaCO_3 = 720$ lbs of $CaCO_3$

> Total = 1842 lbs of $CaCO_3$ plus the value of the nitrogen

Comparison of Soil Amendments Lime Sulfur 6.0% Ca and 22% S

> 440 lbs S/ton X 3.12 lbs $CaCO_3 = 1375$ lbs of CaCO₃ neutralized per ton of product

Contains 6.0% calcium equivalent to 300 lbs of calcium carbonate

 \succ Total = 1675 lbs of CaCO₃

APS 20-0-0-40S

- 800 lbs S X 3.12 lbs = 2,500 lbs of $CaCO_3$ neutralized.
- One pound of N as ammonium will neutralize 3.6 lbs of $CaCO_3 = 400 \times 3.6 = 1440$ lbs.
- 2,500 + 1440 = 3,940 pounds of CaCO₃ neutralized per ton of product.

APS vs Sulfuric acid

- One ton of APS will neutralize 3,940 pounds of CaCO₃ (lime).
- One ton of 93% sulfuric acid will neutralize 1,897 pounds of CaCO₃.
- 3,937 / 1,897 = 2.074 tons: It will take this much sulfuric acid to equal the acidity developed by APS.

APS vs Sulfuric Acid

Product	Sulfuric Acid 93%	APS 20-0-0-40S
Lbs/gal	15.3	9.4
Gal/ton	130.7	212
Amount of calcium carbonate neutralized/ton	1,897 lbs	3,940 lbs*
Lbs of CaCO ₃ neutralized/gal	14.5	18.5
Lbs nitrogen/gal	0	1.9

• One pound of ammonium is assumed to neutralize 3.6 lbs of CaCO3 when no crop is present.

• One pound of elemental sulfur will produce 3.125 pounds of sulfuric acid.

APS vs Sulfuric acid

- One ton of APS is equal to the acidity of 2.074 tons of 93% acid.
- Sulfuric acid at \$____/ton X 2.074 = \$__
- One ton of APS contains 400 pounds of ammonium nitrogen (NH4) at \$____/lb or \$___/ton.
- One ton of APS is equal to \$ ____worth of sulfuric acid plus \$ ____.00 of nitrogen.

Comparison of Soil Amendments Potential Acidity

Product	Lbs of CaCO ₃ neutralized/ ton	Lbs of CaCO ₃ neutralized / gal	Lbs CaCO ₃ neutralized / 100 lbs of product	N	Lbs/ton N	Application	Comments
1.) Sulfuric acid 93%	1897	14.5	95	No	0	Drip, flood	Fast acting
2.) N-Phuric 15/49	2080	13.2	104	Yes	300	Drip, flood	Fast acting plus the value of the nitrogen
3.) N-Phuric 10/55	1842	11.8	92	Yes	200	Drip, flood	Relatively fast acting plus value of the nitrogen
4.) Lime Sulfur 22% S	1675*	8.9	84	No	0	Flood	Relatively fast acting within 2 to 3 weeks plus soluble calcium
5.) APS 20-0-0-40S	3940	19	197	Yes	400	Flood	Relatively fast acting within 2 to 3 weeks plus the value of the nitrogen

* Corrected for soluble calcium content

Soil Amendments

- Are good products for what they are intended
- They are not liquid jack hammers or liquid plows
- Restricted layer should use mechanical method to first break up the layer then use a soil amendment
- Time the application to take advantage of any fertilizer value

Soil Amendments

- 1% CaCO₃ in the soil is equivalent to 20,000 lbs of lime in 6 inches of soil
- Soil amendments will help flush out sodium and/or free up other nutrients
- Phosphorus and zinc are often precipitated on calcium carbonate crystals in the soil.

Myths

- Gypsum lowers soil pH.
- Gypsum does not lower soil pH. All of the sulfur in gypsum is already oxidized to the sulfate form – SO_{4.}

Myths

- The sulfur in sulfuric acid is the element that lowers the soil pH.
- Sulfuric acid: All of the acidity in sulfuric acid is due to the hydrogen ions and not the sulfur $-H_2SO_4$.

Acid Forming Fertilizers

Some Commonly used fertilzers

- UAN 32
- Ammonium sulfate
- Ammonium thiosulfate
- Potassium thiosulfate
- Calcium thiosulfate
- Ammonium nitrate

Ammonium sulfate

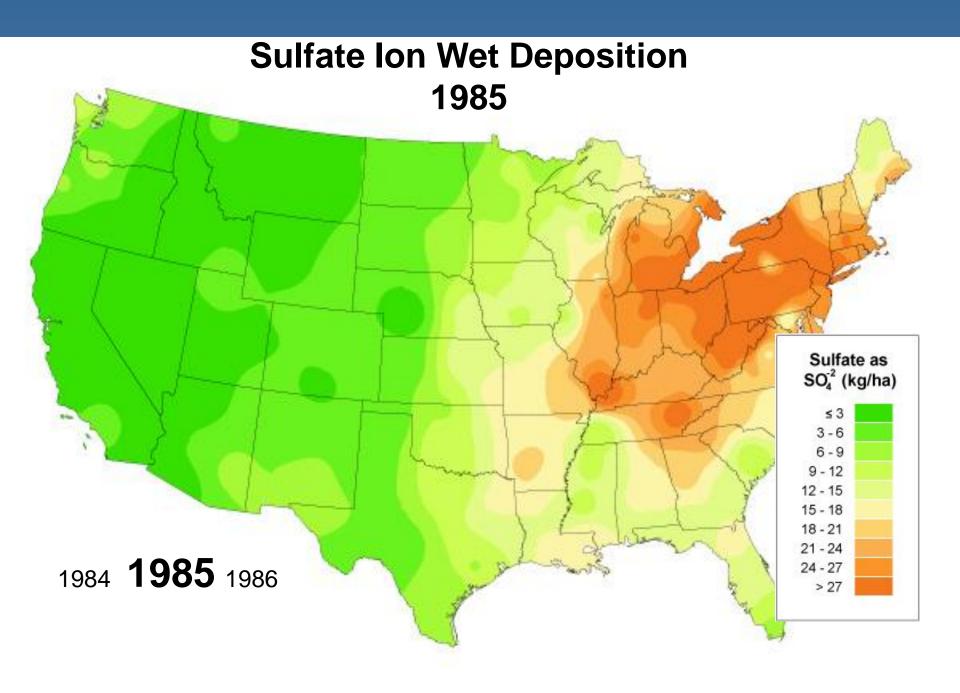
 $(NH_4)_2SO_4 + H_2O \longrightarrow 2NH_4 + SO_4 + H_2O$ $2NH_4 + 3O_2 \longrightarrow 2NO_2 + 2H_2O + 4H^+$

 $2NO_2 + O_2 \longrightarrow 2NO_3$

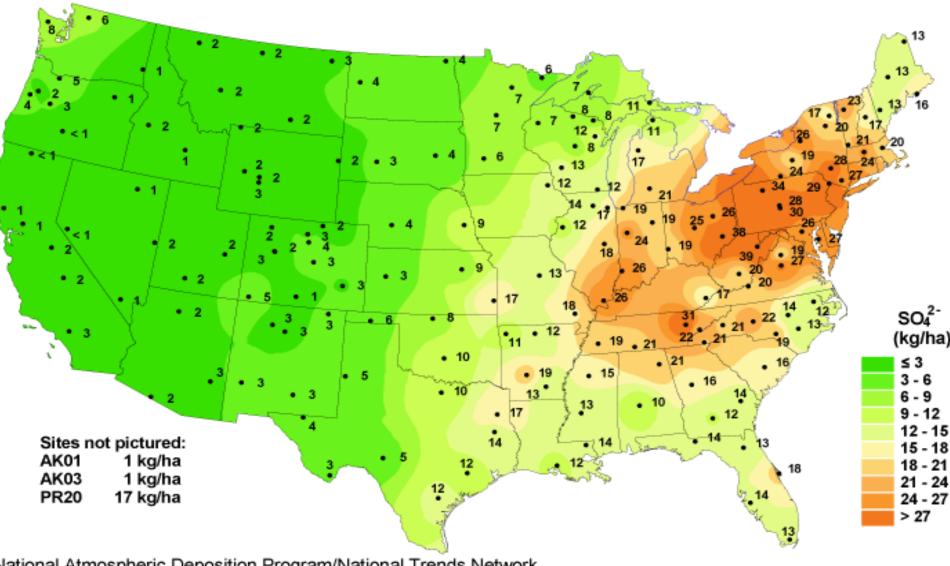
Since there is no hydroxyl produced there is a net production of 2H⁺ per unit of N.

So, one lb of N as ammonium sulfate will neutralize 7.2 lbs of $CaCO_3$.

Acid Forming Fertilizers Potential Acidity

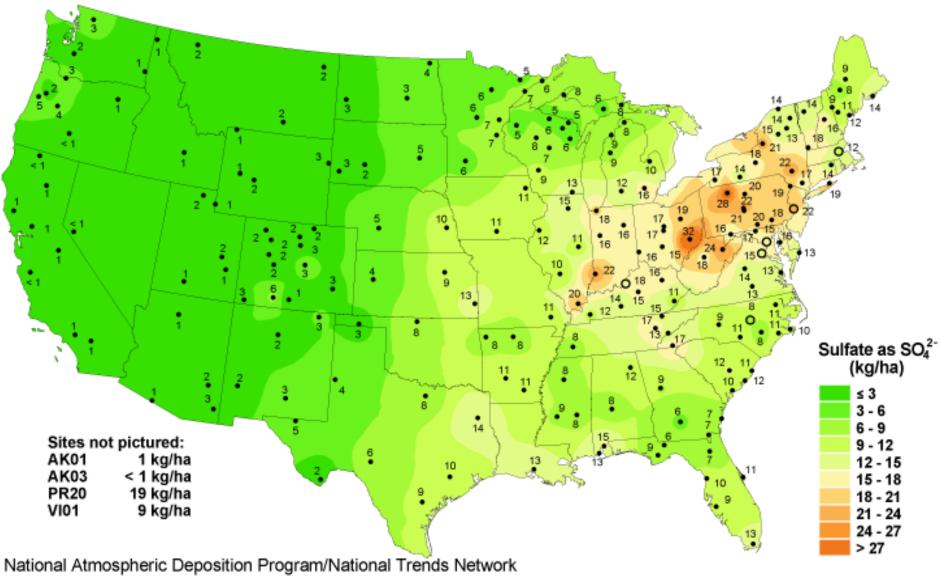

Fertilizer	Lbs CaCO ₃ neutralized / ton	Lbs CaCO ₃ neutralized / gal	Lbs CaCO ₃ neutralized / 100 lbs product
UAN 32 ¹	2304	12.7	115
NH ₄ NO ₃ (dry) 34% N	2448		122
Ammonium sulfate (dry) 21-0-0-24S	3024 ⁴		151
Ammonium thiosulfate 12-0-0-26S	1680 ² 2480 ³	9.3 13.7	84 124
Potassium thiosulfate 0-0-25-17S	531	3.2	27
Calcium thiosulfate 6% Ca, 10%S	313	1.6	16

1, 2. From "Fluid Fertilizer Science and Technology" pp:437-438


3. From "Water Penetration Problems in California Soils"

4. Ammonium sulfate does not form hydroxide (OH) so 1 lb of N will neutralize 7.2 lbs of CaCO3.

Sulfur Deficiency in California?



Sulfate ion wet deposition, 1994

National Atmospheric Deposition Program/National Trends Network http://nadp.sws.uiuc.edu

Sulfate ion wet deposition, 2007

http://nadp.sws.uiuc.edu

 Sulfur emissions from industrial activities has been reduced considerably, the fact still remains that 70% of the total S compounds in the atmosphere are not man made.

Estimate of Available Sulfur from Various Manures

	Sulfur Content					
	So	lid	Liquid			
Manure	TotalAvailableLbs/tonLbs/ton		Total Lbs/1000 gal	Available Lbs/1000gal		
Beef	1.8	1.0	4.8	2.6		
Dairy	1.5	0.8	4.2	2.3		
Swine	2.7	1.4	7.6	4.0		
Poultry	3.3	1.8	9.0	5.0		

Sulfur Requirement

- Sulfur is required by crops such as beans, corn, wheat and potatoes in amounts about the same as phosphorus
- Alfalfa, cabbage and turnips contain larger amounts of S than P in their tissue
- N/S ratio in plant tissue ranges from 10:1 to 15:1 for many crops

Sulfur Nutrition

- Is essential for chlorophyll synthesis (but not a part of it)
- Enters into the composition of vitamins (co-enzyme A, Biotin, Thiomin in Vit B1)
- Is required for some lipids in membranes
 - Important for storage onions
- Has a key role in stress resistance
- Aids in protein formation and seed production
- Promotes nodulation for N fixation by legumes
- All plant enzymes require S, including the one for fixing CO2
 - In one study, alfalfa leaves fixed CO_2 at a rate 25% greater than from S deficient plants

Sulfur in the Plant

- Sulfur deficiency decreases stem and root diameter
- Sulfur deficiency delays maturity of the plant

 Essential in Nitrogen Utilization in the plant

Effects of Sulfur Applied in Furrow Irrigation on Cotton Yield

				Increase	Increase
Tre	atment	Rate/ac	Yield	over check	Value
1)	Check		1294		
2)	S	10 lbs	1366	+72	\$37.00
3)	S	20 lbs	1394	+100	\$52.00
4)	S	30 lbs	1477	+183	\$95.00

Cotton pricing: \$0.52/lb

Application timing: Starting at second irrigation – May 28th, 2 weeks later, 2 weeks later.

Research: Dr. Bill Weir, U.C. Davis

Balanced nutrition

- Plants need a balanced ratio of nutrients
- Rates depend on the type of plant, it's specific nutrient needs, and the stage of growth the application is being made

Acid Soils in California

- Soil surface has become acidic in some areas
 - East side of the San Joaquin Valley
 - Under drippers and micro-sprinklers
 - Near drip tube emitters
- Basic type of fertilizers can be used when the problem is not severe
- Lime is the only cost effective method for correcting low pH soils
 - Must be incorporated to be effective
 - May have an effect on nitrogen fertilizer application
- Soil sampling:
 - 0-3 inch sample
 - 3-12 inch sample